Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril.

نویسندگان

  • Marielle Aulikki Wälti
  • Francesco Ravotti
  • Hiromi Arai
  • Charles G Glabe
  • Joseph S Wall
  • Anja Böckmann
  • Peter Güntert
  • Beat H Meier
  • Roland Riek
چکیده

Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1-40) and Aβ(1-42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1-42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer's disease (AD) patients. Although small Aβ oligomers are believed to be the neurotoxic species, Aβ amyloid fibrils are, because of their presence in plaques, a pathological hallmark of AD and appear to play an important role in disease progression through cell-to-cell transmissibility. Here, we solved the 3D structure of a disease-relevant Aβ(1-42) fibril polymorph, combining data from solid-state NMR spectroscopy and mass-per-length measurements from EM. The 3D structure is composed of two molecules per fibril layer, with residues 15-42 forming a double-horseshoe-like cross-β-sheet entity with maximally buried hydrophobic side chains. Residues 1-14 are partially ordered and in a β-strand conformation, but do not display unambiguous distance restraints to the remainder of the core structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph

Alzheimer's disease is associated with the aggregation into amyloid fibrils of Aβ(1-42) and Aβ(1-40) peptides. Interestingly, these fibrils often do not obtain one single structure but rather show different morphologies, so-called polymorphs. Here, we compare quenched hydrogen-deuterium (H/D) exchange of a disease-relevant Aβ(1-42) fibril for which the 3D structure has been determined by solid-...

متن کامل

Different fates of Alzheimer's disease amyloid-β fibrils remodeled by biocompatible small molecules.

Amyloid fibrils implicated in numerous human diseases are thermodynamically very stable. Stringent conditions that would not be possible in a physiological environment are often required to disrupt the stable fibrils. Recently, there is increasing evidence that small molecules can remodel amyloid fibrils in a physiologically relevant manner. In order to investigate possible fibril remodeling me...

متن کامل

Rationally Designed Turn Promoting Mutation in the Amyloid-β Peptide Sequence Stabilizes Oligomers in Solution

Enhanced production of a 42-residue beta amyloid peptide (Aβ(42)) in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD). The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs) in th...

متن کامل

Fibril Elongation by Aβ17–42: Kinetic Network Analysis of Hybrid-Resolution Molecular Dynamics Simulations

A critical step of β-amyloid fibril formation is fibril elongation in which amyloid-β monomers undergo structural transitions to fibrillar structures upon their binding to fibril tips. The atomic detail of the structural transitions remains poorly understood. Computational characterization of the structural transitions is limited so far to short Aβ segments (5-10 aa) owing to the long time scal...

متن کامل

Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation.

Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 34  شماره 

صفحات  -

تاریخ انتشار 2016